سفارش تبلیغ
صبا ویژن

طراح برتر

به طور کلی ریخته گری دقیق به فرآیندی گفته می شود که در آن اطراف مدل مومی یا پلاستیکی (مدل از بین رفتنی) را با انواع دوغاب سرامیکی پوشش داده، سپس با ذوب و تخلیه موم محفظه قالب ایجاد شده و پس از پخت قالب سرامیکی در آن ذوب ریزی می کنند. بطور کلی دو روش مجزا برای ساختن قالب ریخته گری دقیق وجود دارد:

روش اول: ریخته گری دقیق به روش قالب توپر (solid)

دراین روش مدل را در استوانه ای فولادی قرار داده و داخل آن را با دوغاب سرامیکی پر می کنند، سپس بعد از چند ساعت دوغاب خودگیر، شده و در این هنگام موم را با حرارت خارج کرده و بعد از پخت قالب عملیات بار ریزی را انجام می دهند. این روش ریخته گری امروزه کمتر در تولید قطعات صنعتی به کار می رود و بیشتر در تولید قطعات تزیینی و جواهر سازی و دندانسازی به کار گرفته می شود.

روش دوم: ریخته گری دقیق به روش پوسته ای سرامیکی (shell)

در این روش مدل مومی را در دوغاب سرامیکی غوطه ور می کنند سپس ماسه هایی با دانه بندی گوناگون روی مدل می پاشند که با تکرار این فرآیند، یک لایه سرامیکی اطراف مدل ایجاد خواهد شد. سپس با کمک حرارت دادن، موم را خارج کرده و پس از پخت قالب در آن بار ریزی می شود. این روش امروزه در تولید قطعات صنعتی به طور معمول استفاده شده و در تولید بعضی از قطعات بهترین روش ریخته گری محسوب می شود...

پروژه ساخت مجسمه برنجی به روش ریخته گری دقیق، مشتمل بر 4 فصل، 147 صفحه، تایپ شده، به همراه تصاویر، با فرمت pdf به ترتیب زیر گردآوری شده است:

فصل 1: مقدمه

  • مقدمه
  • ریخته گری
  • مزایای روش ریخته گری نسبت به روش های دیگر
  • محدودیت های روش ریخته گری
  • روش های ریخته گری
  • ریخته گری در قالب های ماسه ای تر
  • ریخته گری در قالب های پوسته ای
  • ریخته گری در قالب های ریژه
  • ریخته گری تحت فشار
  • ریخته گری گریز از مرکز

فصل 2: مروری بر منابع و مباحث تئوری

  • روش ریخته گری دقیق
  • تاریخچه
  • ویژگی ریخته گری دقیق
  • مزایا و محدودیت های ریخته گری دقیق
  • مراحل ریخته گری دقیق به روش پوسته ای
  • طراحی
  • تهیه ی مدل ها
  • سیستم راهگاهی و تغذیه گذاری مومی در روش دقیق
  • خوشه کردن مدل ها
  • مرحله ی شست وشوی مدل هاچ
  • غوطه وری در دوغاب سرامیکی
  • خشک کردن خوشه ها پس از اتمام دوغاب زنی و ماسه پاشی
  • موم زدایی
  • پخت قالب پوسته ای سرامیکی
  • بارریزی در قالب های پوسته ای سرامیکی
  • سرد شدن قالب ها
  • مرحله تخریب قالب
  • جدا کردن قطعات از سیستم راهگاهی
  • پرداخت کاری قطعات
  • تایید صحت قطعات
  • مواد نسوز مورد استفاده در دوغاب ریخته گری دقیق
  • مراحل ریخته گری دقیق به روش توپر
  • تهیه مدل در فرآیند توپر
  • خوشه کردن مدل ها در فرآیند توپر
  • نصب خوشه بر روی کفی قالب
  • قرار دادن سیلندر بر روی کفی قالب
  • ریختن دوغاب (سرامیک نسوز) درون سیلندر
  • استفاده از وکیوم پس از ریختن دوغاب درون قالب
  • خشک شدن دوغاب سرامیکی در روش توپر
  • موم زدایی در روش توپر
  • پخت قالب در روش توپر
  • بارریزی در روش توپر
  • تخریب قالب توپر
  • پرداخت کاری قطعات
  • پتینه کاری قطعات (کهنه نما)
  • موم های مدلسازی
  • مدل های پلاستیکی

فصل 3: بخش عملی پروژه

  • ساخت مجسمه برنجی به روش ریخته گری دقیق
  • مراحل ساخت یک قطعه به روش ریخته گری دقیق (توپر)
  • تهیه قالب برای ساخت مدل مومی
  • ذوب موم
  • ریختن موم مذاب درون قالب
  • سرد کردن قالب پس از موم ریزی
  • خروج مدل مومی از قالب سیلیکونی
  • مشاهده مدل مومی و ترمیم عیوب آن
  • اتصال مدل به سیستم راهگاهی مومی
  • پوشانیدن سیلندر با چسب نواری
  • قرار دادن سیلندر بر روی کفی قالب
  • نصب مدل مومی در مرکز سیلندر
  • ساخت دوغاب سرامیکی با استفاده از گچ نسوز
  • گاز زدایی دوغاب گچ با استفاده از دستگاه ویبراتور
  • ریختن دوغاب درون قالب
  • قرار دادن سیلندر بر روی دستگاه ویبراتور پس از ریختن دوغاب درون آن
  • خشک کردن قالب
  • موم زدایی قالب
  • عملیات پخت قالب
  • بارریزی درون قالب
  • سرد کردن قالب
  • تخریب قالب
  • پاکسازی قطعه از گچ نسوز به کمک برس سیمی
  • پرداخت قطعه به روش سند بلاست
  • شکل پایانی مجسمه
  • عیب ساچمه بر روی مجسمه
  • عیب معیوب شدن قطعه
  • ساخت مجسمه تو خالی به روش ریخته گری دقیق (توپر)
  • ساخت مجسمه تو خالی به کمک ماهیچهگذاری
  • ساخت مجسمه تو خالی به روش سرریزی
  • ساخت یک قطعه به روش ریخته گری دقیق (پوسته ای سرامیکی)
  • تهیه قالب برای ساخت مدل مومی
  • تزریق موم مذاب در قالب
  • خروج مدل مومی از قالب
  • اتصال راهباره به مدل مومی
  • خوشه کردن مدل ها
  • آماده سازی دوغاب
  • غوطه وری خوشه ها در دوغاب سرامیکی و پاشیدن ماسه بر روی خوشه ها
  • خشک کردن قالب ها
  • موم زدایی قالب ها
  • پخت قالب ها
  • بارریزی
  • تخریب قالب
  • برسی قطعات پس از تخریب قالب
  • توقف تولید

فصل 4: نتیجه گیری و مراجع

  • نتیجه گیری
  • نتیجه گیری از فصل اول
  • نتیجه گیری از فصل دوم
  • نتیجه گیری از فصل سوم
  • مراجع


جهت دانلود پروژه ساخت مجسمه برنجی به روش ریخته گری دقیق، به لینک زیر مراجعه نمایید:

 

 

ساخت مجسمه برنجی به روش ریخته گری دقیق

 


در این مقاله با انتخاب یک روتور صفحه ای جفکات به عنوان ماشین دوار، معادلات حاکم بر حرکت روتور و پاسخ سیستم دوار به نابالانسی و خم استاتیکی موجود در آن (شامل دامنه و فاز پاسخ) استنتاج می شوند. در ادامه با بکارگیری یک بالانسر رینگ و گلوله به عنوان اتوبالانسر انفعالی بر روی ماشین دوار، به استنتاج معادلات حرکت، تحلیل پایداری و بدست آوردن پاسخ های زمانی سیستم پرداخته می شود. تحلیل پایداری سیستم حول وضعیت های تعادل آن برای اتوبالانسری با یک و دو گلوله، بر اساس معیار روت هاویتز انجام شده است. پاسخ های زمانی سیستم در جهت تایید تحلیل پایداری انجام گرفته، ارائه شده است...

مقاله بالانس اتوماتیک ماشین های دوار با استفاده از یک سیستم بالانس کننده انفعالی و تعیین محدوده های پایدار آن، مشتمل بر 8 صفحه، به زبان فارسی، تایپ شده، به همراه تصاویر، دیاگرام، فرمول ها و روابط ریاضی با فرمت pdf، به ترتیب زیر گردآوری شده است:

  • چکیده
  • مقدمه
  • بالانسر انفعالی رینگ و گلوله
  • اصول کار بالانسر
  • معادله حرکت روتور
  • بیان معادلات سیستم در فضای حالت
  • ارتعاشات خطی سیستم حول نقاط تعادل
  • تحلیل پایداری سیستم
  • نتیجه گیری
  • مراجع

جهت دانلود مقاله بالانس اتوماتیک ماشین های دوار با استفاده از یک سیستم بالانس کننده انفعالی و تعیین محدوده های پایدار آن، به لینک زیر مراجعه نمایید:

 

 

بالانس اتوماتیک ماشین های دوار با استفاده از یک سیستم بالانس کننده

 


امروزه برای انتقال قدرت از یک شافت به شافت دیگر، کوپلینگ ها به کثرت مورد استفاده قرار می گیرند. در این رابطه، بررسی مکانیزم حرکت آنها و شبیه سازی آن از اهمیت ویژه ای برخوردار است. یکی از انواع کوپلینگ هایی که کاربردهای فراوانی دارد، کوپلینگ یونیورسال می باشد. در این مقاله ابتدا مقداری راجع به این نوع کوپلینگ ها و تئوری حرکت آنها صحبت می شود، سپس به کمک نرم افزار Working Model مکانیزم حرکت آنها شبیه سازی گردیده و نتایج بدست آمده مورد تجزیه و تحلیل قرار می گیرد...

مقاله بررسی کوپلینگ های یونیورسال و شبیه سازی مکانیزم آنها به کمک نرم افزار Working Model، مشتمل بر 8 صفحه، به زبان فارسی، تایپ شده، به همراه تصاویر، دیاگرام، فرمول ها و روابط ریاضی با فرمت pdf، به ترتیب زیر گردآوری شده است:

  • چکیده
  • مقدمه
  • بررسی تئوری حرکت کوپلینگ های یونیورسال
  • نسبت سرعت شافت ها
  • مقدار ماکزیمم و مینیمم سرعت شافت متحرک
  • شرایط تساوی سرعت شافت ها
  • شتاب زاویه ای شافت متحرک
  • کوپلینگ های یونیورسال جفت
  • شبیه سازی کوپلینگ های یونیورسال
  • بررسی نتایج بدست آمده
  • کوپلینگ های یونیورسال تکی
  • کوپلینگ های یونیورسال جفت
  • نتیجه گیری
  • مراجع

جهت دانلود مقاله بررسی کوپلینگ های یونیورسال و شبیه سازی مکانیزم آنها به کمک نرم افزار Working Model، به لینک زیر مراجعه نمایید:

 

 

بررسی کوپلینگ های یونیورسال و شبیه سازی مکانیزم آنها

 


زمانی که بر روی یک سطح صاف قرار می گیرید، وظیفه سیستم تعلیق (فنربندی) خودرو، کار آسانی به نظر می رسد. اما اگر سرعت گیرها کمتر به شما ضربه وارد کنند آن وقت متوجه می شوید که اهمیت سیستم تعلیق چیست. حقیقت این است که سیستم تعلیق خودرو حجم کار زیادی را در خودرو به دوش دارد. هر قطعه این سیستم بیشتر از هر عضو دیگری فشار را تحمل می کند. سیستم تعلیق یا فنربندی خودرو میان بدنه و چرخ های خودرو قرارگرفته است و به منظور برآورده کردن اهداف مهمی در خودرو به کارگرفته می شود. در حالت ایده ­آل، یک سیستم تعلیق مناسب و سالم، ضربات و دیگر ناهمواری های جاده را جذب می کند. به این ترتیب ضربه اثری بر کابین داخلی خودرو نداشته و سرنشینان با آرامش بیشتری به مسیر ادامه می دهند. این ویژگی سیستم تعلیق، از دیدگاه مسافر اهمیت بسیار بالایی دارد، درحالی که ممکن است راننده به دیگر فواید این سیستم نیز آشنا باشد. همچنین فنربندی خودرو وظیفه دارد که تا حد ممکن چرخ های خودرو را به زمین بچسباند. در سیستم تعلیق ایستا هیچ منبع انرژی بیرونی وجود نداشته و این سیستم تنها توانایی بازیابی و میرایش انرژی را دارد. بنابراین اثرات ناخواسته و ناراحت کننده حرکات غلتش بدنه در هنگام چرخش خودرو، کله زدن بدنه در هنگام شتاب گیری و ترمزدهی، بلند شدن و جابه جایی مانای بدنه نسبت به سیستم تعلیق در هنگام چرخش پایدار خودرو و ... هیچگاه از بین نمی رود. از آنجا که در این سیستم منبع انرژی بیرونی وجود ندارد، بنابراین ساده، ارزان و قابل اعتماد است. در بیشتر این سیستم ها مقادیر سختی فنر و میرایی لرزه گیر ثابت بوده و با برگزیدن ضرایب مناسب و کاهش بلندی گرانیگاه خودرو می توان به کیفیت خوش سواری و فرمان پذیری خوبی دست یافت. فنر نرم بر واکنش شتاب گیری، ترمز گیری و چرخش خودرو تاثیرات منفی دارد.

هدف این پروژه بررسی سیستم تعلیق خودرو برای بدست آوردن بهترین شرایط کنترلی و پایداری سیستم می باشد تا نهایتا خروجی مطلوب حاصل گردد. البته دلیل عمده و هدف اصلی انتخاب این پروژه اهمیت سیستم تعلیق در راحتی و آسایش سرنشینان خودرو در مقابل ناهمواری ها که به صورت اغتشاشات عملکرد سیستم تعلیق را تحت تاثیر قرار می دهد بوده است و خواسته یک مهندس کنترل نیز جدا از این موضوع نیست...

پروژه سیستم تعلیق خودرو برای یک چرخ، مشتمل بر 29 صفحه، تایپ شده، به همراه دستورات MATLAB و تصاویر، با فرمت pdf به ترتیب زیر گردآوری شده است:

  • مقدمه
  • سیستم تعلیق ایستا
  • سیستم تعلیق پویا
  • سیستم تعلیق کنا
  • سیستم تعلیق نیمه کنا
  • مدل سازی
  • پاسخ پله سیستم ها
  • پاسخ ضربه سیستم ها
  • معادلات فضای حالت
  • تحلیل پایداری سیستم با روش راث
  • اغتشاش
  • تاثیر اغتشاش بر روی سیستم حلقه بسته
  • تاثیر اغتشاش بر روی سیستم حلقه باز
  • مکان هندسی ریشه ها
  • نمودار بود
  • نمودار نایکوییست
  • وارد کردن تاخیر ثانیه ومشاهده نمودار نایکوییست

جهت دانلود پروژه سیستم تعلیق خودرو برای یک چرخ، به لینک زیر مراجعه نمایید:

 

 

سیستم تعلیق خودرو برای یک چرخ

 


در این پروژه برای مدل تابع تبدیل کنترل کلاسیک، کنترل مدرن و کنترل بهینه در دو حالت زمان پیوسته و زمان گسسته طراحی شده است. ابتدا کنترل PID پیوسته طراحی شده و سپس PID دیجیتال و سپس رفتار سیستم نسبت به دو حالت مقایسه شده و در مرحله بعد کنترل فیدبک حالت و مشاهده گر و کنترل فیدبک با مشاهده گر طراحی شده و همچنین حالت های سیستم را با مشاهده گر مقایسه شده اند و تاثیر نویز و تغییر پارامتر ها روی رفتار سیستم بررسی شده است. سپس کنترل فیدبک حالت زمان گسسته، مشاهده گر آن و کنترل فیدبک حالت زمان گسسته همراه با مشاهده گر طراحی شده اند و حالت های سیستم را با مشاهده گر مقایسه شده اند. اثر نویز و تغییر پارامترها را روی این طراحی ها بررسی شده است و در آخر کنترل فیدبک حالت بهینه با تابع هزینه دلخواه طراحی شده است و رفتار سیستم با این طراحی را در حضور نویز بررسی شده است. نتیجه ای که گرفته ایم این است که کنترل PID در حذف نویز از سایر طراحی ها موفق تر بوده و کنترل فیدبک حالت نسبت به تغییر پارامترهای سیستم مقاوم تر بوده و از نظر سرعت رسیدن به حالت مانا، SVFC سریع ترین پاسخ را داشته است.

پروژه طراحی کنترلر کلاسیک، کنترل مدرن و کنترل بهینه برای مدل تابع تبدیل در حالت های زمان پیوسته و زمان گسسته و مقایسه آنها در محیط کد نویسی در MATLAB، مشتمل بر 57 صفحه، تایپ شده، به همراه روابط ریاضی و تصاویر با فرمت pdf جهت دانلود قرار داده شده و به ترتیب زیر گردآوری شده است:

  • طراحی کنترل کننده PID زمان پیوسته
  • نوشتن معاد?ت حالت س?ستم
  • طراح? کنترلر PID با استفاده از روش astrom
  • نمودار های حوزه فرکانس کنترلر طراحی شده
  • ترسیم ورودی کنترلی به Plant
  • بررسی رفتار سیستم در حضور نویز و تغییر پارامترهای سیستم
  • نویز ثابت
  • نویز سینوسی
  • تغییر پارامتر
  • طراحی کنترلر دیجیتال PID
  • طراحی کنترل کننده PID با استفاده از روش astrom
  • نمودارهای حوزه فرکانس کنترل کننده طراحی شده
  • ورودی کنترلی به plant
  • بررسی رفتار سیستم در حضور نویز و تغییر پارامترها ی سیستم
  • نویز ثابت
  • نویز سینوسی
  • تغییر پارامتر
  • مقایسه عملکرد PID دیجیتال و PID زمان پیوسته
  • کنترل فیدبک حالت و مشاهده گر
  • طراحی SVFC
  • طراحی مشاهده گر
  • ترسیم حالت های سیستم و تخمین آنها
  • طراحی SVFC با مشاهده گر مرتبه کامل
  • بررسی رفتار سیستم با حضور نویز و تغییر پارامترهای سیستم
  • نویز ثابت
  • نویز سینوسی
  • تغییر پارامتر های سیستم
  • مقایسه ورودی کنترلی SVFC با ورودی کنترلیSVFC ومشاهده گر
  • مقایسه SVFC با PID
  • طراحی FTSC ، FTSC FTSO
  • تبدیل سیستم به سیستم دیجیتال و استخراج معادلات حالت آن
  • طراحی FTSC
  • طراحی FTSO و ترسیم حالت های سیستم و تخمین انها و خطای آنها
  • طراحی مشاهده گر دیجیتال و ترسیم حالت ها و تخمین ها
  • ترسیم حالت های سیستم و تخمین آنها زمان پیوسته و زمان گسسته در یک نمودار
  • طراحی FTSFTSO
  • بررسی رفتار سیستم در حضور نویز
  • نویز ثابت
  • نویز سینوسی
  • نویز سفید
  • بررسی رفتار سیستم با تغییر پارامترهای سیستم
  • بررسی ورودی کنترلی FTSC با ورودی کنترلی FTSCFTSO
  • مقایسه FTSC با کنترلر PID دیجیتال طراحی شده در بخش دوم
  • کنترل بهینه
  • طراحی SVFC بهینه
  • رفتار سیستم در حضور نویز
  • مقایسه پاسخ پله سیستم با طراحی های LQR ،SVFC ،FTSC ،PID
  • نتیجه گیری

جهت دانلود پروژه طراحی کنترلر ، کنترل مدرن و کنترل بهینه برای مدل تابع تبدیل در حالت های زمان پیوسته و زمان گسسته و مقایسه آنها در محیط کد نویسی نرم افزار Matlab به لینک زیر مراجعه نمایید:

 

 

طراحی کنترل مدرن و کنترل بهینه برای مدل تابع تبدیل